Chemistry 12: Equilibrium

Worksheet #2: Expressions, "At Equilibrium" and Beginner's ICE Table Calculations

Complete the following assignment on a separate sheet of paper.

1) Write the equilibrium expression (K_{eq}) for the following reactions. (1 mark each)

a.
$$PCI_{3}(g) + CI_{2}(g) \leftrightarrows PCI_{5}(g)$$

b. $CH_{4}(g) + H_{2}O(g) + 49.3 \text{ kJ} \leftrightarrows CO(g) + 3 H_{2}(g)$
c. $2 \text{ NO}(g) + O_{2}(g) \leftrightarrows 2 \text{ NO}_{2}(g)$
d. $BaSO_{4}(s) \leftrightarrows Ba^{2+}(aq) + SO_{4}^{2-}(aq)$
e. $2 \text{ Hg}(s) + O_{2}(g) \leftrightarrows 2 \text{ HgO}(s)$
f. $2 \text{ NaHCO}_{3}(s) \leftrightarrows \text{Na}_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g)$
g. $CaCO_{3}(s) + 2 \text{ HCI}(aq) \leftrightarrows CaCI_{2}(aq) + CO_{2}(g) + H_{2}O(l)$
h. $4 \text{ NH}_{3}(g) + 5 O_{2}(g) \leftrightarrows 4 \text{ NO}(g) + 6 \text{ H}_{2}O(g)$
i. $CaCO_{3}(s) \leftrightarrows CaO(s) + CO_{2}(g)$

j. $4 \text{ NH}_3(g) + 7 O_2(g) = 4 \text{ NO}_2(g) + 6 \text{ H}_2O(g) + \text{ energy}$

For each of the following, you MUST write the K_{eq} expression, substitute in the values, then solve. SHOW ALL WORK and watch Sig Figs and units (where appropriate) for your final answer.

At Equilibrium

- 2) $SO_3(g) + H_2O(g) \leftrightarrows H_2SO_4(I)$ At equilibrium, the $[SO_3] = 0.400$ M and the $[H_2O] = 0.480$ M. Calculate the value of the equilibrium constant. (2 marks)
- 3) PCl₅(s) + H₂O(g) ≒ 2 HCl(g) + POCl₃(g)
 A 2.0 L flask at equilibrium at 100°C contains 0.075 mol of PCl₅, 0.050 mol of H₂O,
 0.750 mol of HCl, and 0.500 mol of POCl₃. Calculate the K_{eq} for the reaction. (5 marks)
- 4) $2 NO_2(g) \leftrightarrows N_2O_4(g)$.

If 2.00 moles of NO₂ and 1.60 moles of N_2O_4 are present in a 4.00 L flask at equilibrium, what is the equilibrium constant? (4 marks)

5) $H_2(g) + I_2(g) \iff 2 HI(g)$.

If, at equilibrium, $[H_2] = 0.200$ M and $[I_2] = 0.200$ M, what is the concentration of HI in the 5.0 L flask? $K_{eq} = 55.6$ at 250°C. (2 marks)

6) $CO(g) + H_2O(g) \leftrightarrows CO_2(g) + H_2(g)$

An 8.00 L container at 690°C is found to contain 1.60 moles of CO, 1.60 moles of H_2O , 4.00 moles of CO_2 , and 4.00 moles of H_2 . Calculate the equilibrium constant for the reaction at this temperature. (4 marks)

7) $2 SO_2(g) + O_2(g) \Rightarrow 2 SO_3(g)$. $K_{eq} = 798$ Calculate the $[O_2]$ if the $[SO_2] = 4.20$ M and $[SO_3] = 11.0$ M. (2 marks)

For each of the following, you MUST include an ICE table and the K_{eq} expression. SHOW ALL WORK and watch Sig Figs and units (where appropriate) for your final answer. Beginners ICE boxes

8) A reaction vessel had 1.95 M CO and 1.25 M H_2O introduced into it. After an hour, equilibrium was reached according to the equation:

 $CO_2(g) + H_2(g) \leftrightarrows CO(g) + H_2O(g)$

Analysis showed that 0.85 M of CO_2 was present at equilibrium. What is the equilibrium constant for this reaction? (4 marks)

- 9) 2 SO₂(g) + O₂(g) ≒ 2 SO₃(g)
 Into a 2.00 L container is placed 1.00 mol of SO₂(g) and 1.00 mol of O₂(g). At equilibrium, [SO₃]
 = 0.150 M. Calculate the equilibrium constant for this reaction. (5 marks)
- 10) 2 NOCl(g) \Rightarrow 2 NO(g) + Cl₂(g)

When 0.50 mol of NOCl was put into a 1.0 L flask and allowed to reach equilibrium, 0.10 mol of Cl_2 was found. What is K_{eq} for this reaction? (4 marks)

11) Consider the following equilibrium:

 $3 I_2(g) + 6 F_2(g) \leftrightarrows 2 IF_5(g) + I_4F_2(g)$

- a) At a certain temperature, 2.0 mol of I_2 and 3.0 mol of F_2 are introduced into a 10.0 L container. At equilibrium, the concentration of I_4F_2 is 0.020 M. Calculate K_{eq} for the reaction at this temperature. (4 marks)
- b) At a higher temperature, 6.0 mol of IF₅ and 8.0 mol of I₄F₂ are put into a 5.0 L container. At equilibrium, 6.0 mol of I₄F₂ exist. Calculate K_{eq} for the reaction at this second temperature. (5 marks)
- c) Based on the values calculated above, predict whether the reaction is endothermic or exothermic. Explain your reasoning. (1 mark)
- 12) Consider the following equilibrium:

 $N_2(g) + 3 H_2(g) \leftrightarrows 2 NH_3(g)$

- a) When a 4.0 L reaction vessel was filled with 2.00 mol of NH₃ and allowed to reach equilibrium, the ammonia concentration was found to be 0.10 M. Calculate the equilibrium constant for the reaction. (5 marks)
- b) Using your answer from above, calculate the $[H_2]$ for a new vessel at the same temperature. The equilibrium concentration of $[N_2]$ = 0.45 M and $[NH_3]$ = 0.010 M for this new vessel. (1 mark)