Chemistry 12: Equilibrium
Worksheet \#2: Expressions, "At Equilibrium" and Beginner's ICE Table Calculations

Complete the following assignment on a separate sheet of paper.

1) Write the equilibrium expression ($K_{e q}$) for the following reactions. (1 mark each)
a. $\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{PCl}_{5}(\mathrm{~g})$
b. $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+49.3 \mathrm{~kJ} \leftrightarrows \mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g})$
c. $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$
d. $\mathrm{BaSO}_{4}(\mathrm{~s}) \leftrightarrows \mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
e. $2 \mathrm{Hg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HgO}(\mathrm{s})$
f. $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
g. $\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \leftrightarrows \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
h. $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
i. $\mathrm{CaCO}_{3}(\mathrm{~s}) \leftrightarrows \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
j. $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+$ energy

For each of the following, you MUST write the $K_{\text {eq }}$ expression, substitute in the values, then solve. SHOW ALL WORK and watch Sig Figs and units (where appropriate) for your final answer.

At Equilibrium

2) $\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})$

At equilibrium, the $\left[\mathrm{SO}_{3}\right]=0.400 \mathrm{M}$ and the $\left[\mathrm{H}_{2} \mathrm{O}\right]=0.480 \mathrm{M}$. Calculate the value of the equilibrium constant. (2 marks)
3) $\mathrm{PCl}_{5}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows 2 \mathrm{HCl}(\mathrm{g})+\mathrm{POCl}_{3}(\mathrm{~g})$

A 2.0 L flask at equilibrium at $100^{\circ} \mathrm{C}$ contains 0.075 mol of $\mathrm{PCl}_{5}, 0.050 \mathrm{~mol}$ of $\mathrm{H}_{2} \mathrm{O}$, 0.750 mol of HCl , and 0.500 mol of POCl_{3}. Calculate the $\mathrm{K}_{\text {eq }}$ for the reaction. (5 marks)
4) $2 \mathrm{NO}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$.

If 2.00 moles of NO_{2} and 1.60 moles of $\mathrm{N}_{2} \mathrm{O}_{4}$ are present in a 4.00 L flask at equilibrium, what is the equilibrium constant? (4 marks)
5) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{HI}(\mathrm{g})$.

If, at equilibrium, $\left[\mathrm{H}_{2}\right]=0.200 \mathrm{M}$ and $\left[\mathrm{I}_{2}\right]=0.200 \mathrm{M}$, what is the concentration of HI in the 5.0 L flask? K ${ }_{\text {eq }}=55.6$ at $250^{\circ} \mathrm{C}$. (2 marks)
6) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrows \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

An 8.00 L container at $690^{\circ} \mathrm{C}$ is found to contain 1.60 moles of $\mathrm{CO}, 1.60$ moles of $\mathrm{H}_{2} \mathrm{O}$, 4.00 moles of CO_{2}, and 4.00 moles of H_{2}. Calculate the equilibrium constant for the reaction at this temperature. (4 marks)
7) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{SO}_{3}(\mathrm{~g}) . \mathrm{K}_{\text {eq }}=798$

Calculate the $\left[\mathrm{O}_{2}\right]$ if the $\left[\mathrm{SO}_{2}\right]=4.20 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=11.0 \mathrm{M}$. (2 marks)
For each of the following, you MUST include an ICE table and the $K_{\text {eq }}$ expression. SHOW ALL WORK and watch Sig Figs and units (where appropriate) for your final answer.
Beginners ICE boxes
8) A reaction vessel had 1.95 MCO and $1.25 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ introduced into it. After an hour, equilibrium was reached according to the equation:

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Analysis showed that 0.85 M of CO_{2} was present at equilibrium. What is the equilibrium constant for this reaction? (4 marks)
9) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{SO}_{3}(\mathrm{~g})$

Into a 2.00 L container is placed 1.00 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ and 1.00 mol of $\mathrm{O}_{2}(\mathrm{~g})$. At equilibrium, $\left[\mathrm{SO}_{3}\right]$
$=0.150 \mathrm{M}$. Calculate the equilibrium constant for this reaction. (5 marks)
10) $2 \mathrm{NOCl}(\mathrm{g}) \leftrightarrows 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$

When 0.50 mol of NOCl was put into a 1.0 L flask and allowed to reach equilibrium, 0.10 mol of Cl_{2} was found. What is $\mathrm{K}_{\text {eq }}$ for this reaction? (4 marks)
11) Consider the following equilibrium:

$$
3 \mathrm{I}_{2}(\mathrm{~g})+6 \mathrm{~F}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{IF}_{5}(\mathrm{~g})+\mathrm{I}_{4} \mathrm{~F}_{2}(\mathrm{~g})
$$

a) At a certain temperature, 2.0 mol of I_{2} and 3.0 mol of F_{2} are introduced into a 10.0 L container. At equilibrium, the concentration of $\mathrm{I}_{4} \mathrm{~F}_{2}$ is 0.020 M . Calculate $\mathrm{K}_{\text {eq }}$ for the reaction at this temperature. (4 marks)
b) At a higher temperature, 6.0 mol of IF_{5} and 8.0 mol of $\mathrm{I}_{4} \mathrm{~F}_{2}$ are put into a 5.0 L container. At equilibrium, $6.0 \mathrm{~mol}^{\text {of }} \mathrm{I}_{4} \mathrm{~F}_{2}$ exist. Calculate $\mathrm{K}_{\text {eq }}$ for the reaction at this second temperature. (5 marks)
c) Based on the values calculated above, predict whether the reaction is endothermic or exothermic. Explain your reasoning. (1 mark)
12) Consider the following equilibrium:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

a) When a 4.0 L reaction vessel was filled with 2.00 mol of NH_{3} and allowed to reach equilibrium, the ammonia concentration was found to be 0.10 M . Calculate the equilibrium constant for the reaction. (5 marks)
b) Using your answer from above, calculate the $\left[\mathrm{H}_{2}\right]$ for a new vessel at the same temperature. The equilibrium concentration of $\left[\mathrm{N}_{2}\right]=0.45 \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]=0.010 \mathrm{M}$ for this new vessel. (1 mark)

